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Abstract. We have carried out a Monte Carlo study of the nearest-neighbour ferromagnetic
XY-model on the two-dimensional (2D) Penrose lattice and on periodically stacked (three-
dimensional) 2D Penrose lattices. For the 2D case we have examined the magnetization, specific
heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect
to inverse temperature. The behaviour of all of these quantities points to a Kosterlitz—Thouless
transition occurring in the temperature rarige= (1.0-105)J/K 3, with critical exponents that

are consistent with those obtained for crystalline (e.g., square) lattices. For the 3D stacking of
the 2D Penrose lattices, examination of the magnetization, specific heat and linear susceptibility
reveals a conventional second-order phase transition. Through cumulant analysis and finite-
size scaling we obtain a critical temperatufe = (2.292+ 0.003)J and critical exponents

o’ =0.03+0.03, 8 = 0.30+0.01 andy = 1.31+ 0.02, in agreement with previous studies of

the XY-model on the 3D cubic lattice.

1. Introduction

The effect of the unique structural properties of quasicrystals, such as quasiperiodicity,
hierarchical length scales and self-similarity, on phase transitions and critical phenomena
has not yet been studied at length. Arguments have been presented to the effect
that quasiperiodic or ‘limit quasiperiodic’ structures that are characterized by bounded
fluctuations in structural features (also describedP&®t structurep belong to the same
universality class as crystals or periodic structures [1]. A similar argument applies to
aperiodic structures as well. Thus, in the language of the renormalization group, both
aperiodicity and quasiperiodicity appear irrelevant. So far, this seems to be supported by
numerical simulations on planar Penrose tilings for the Ising model [2], percolation problem
[3] and random and self-avoiding walks [4]. Sorense¢al [2], in particular, have analysed

the Ising model data for a sequence of periodic rational approximants of the 2D Penrose
lattice, each characterized by an integesuch that the limiy — oo yields the quasiperiodic
Penrose lattice. By extrapolating the results for the rational approximants they rule out the
possibility of a change in the universality class¢gas> oo, i.e. for the truly quasiperiodic

case. A version of the eight-vertex model on the Penrose lattice has been solved by Korepin
[5] and is found to have critical properties close to the periodic case.

In this work, we present a detailed Monte Carlo study of the ferromagnetic nearest-
neighbourXY-model on 2D Penrose lattices [6] and a periodic 3D stacking of such lattices,
with results indicating that quasiperiodicity is indeed an irrelevant variable for this model.
The first part of our study, involving 2D Penrose lattices, closely follows that of Tobochnik
and Chester [7], Van Himbergen and Chakravarty [8], Teitel and Jayaprakash [9] and Shih
and Stroud [10] on square lattices. A study of tki&-model on the 2D Penrose lattice,
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including up to third-nearest-neighbour interactions, has been reported by eeduf 1].

These authors studied the magnetic properties of the model for different relative signs and
magnitudes of the three near-neighbour interactions. Among other findings, they reported
the existence of a Kosterlitz—Thouless (KT) [12, 13] transition for which evidence was
provided via the thermal variation of the specific heat and, in particular, the saturation of
the specific heat peak with increasing system size. However, details of the KT transition,
such as the critical exponents and the transition temperature itself, were not determined. In
this work, the KT transition on a Penrose lattice is studied in detail, with calculations of
the specific heat, susceptibility, magnetization, helicity modulus and the derivative of the
helicity modulus with respect to inverse temperature.

We also examine a 3D version of our model, namely, the 2D Penrose lattices stacked
periodically along thez-direction. Previous MC studies of the 3®Y-model on cubic
lattices, performed by Hasenbusch and Meyer [14], Janke [15] and Gottlob and Hasenbusch
[16], have all revealed the usual second-order transition. Our systems exhibit a critical
behaviour similar to that reported in the above studies on cubic lattices. Using a cumulant
analysis we determine the critical temperature, and then perform a finite-size scaling of the
magnetization, susceptibility and specific heat. The critical exponents that we obtain are in
good agreement with the accepted values [17].

A couple of comments about the choice of our 3D systems are in order. A natural
extension of our 2D system would be a 3D Penrose lattice (Amman tilings). On the
basis of the universality hypothesis one would expect the 3D Penrose lattice to show a
similar transition and exponents to the periodically repeated 2D tilings we have considered.
However, since the spin configurations in thé& -model are two dimensional, the model
is more suitable for describing interactions in planar structures than non-planar ones. 3D
Amman tilings exhibit no planar structure, inasmuch as there are no clearly identifiable
sets of parallel planes along which the spins would have any physical grounds for lying.
From this point of view, our choice of the 3D systems seems more natural fok Yhe
model. In addition, the 3D systems that we have studied are known to form the lattices that
describe decagonal quasicrystals, structures that show quasiperiodicityXry tpeane, but
are periodic along the-direction. For example, the decagonal Al-Cu—Co quasicrystal is
described quite well by the Burkov model [18] where the vertices and the interstitials of a
2D Penrose lattice are decorated with certain atomic motifs and the resulting 2D structure
is repeated periodically in the perpendiculat) [direction. A third reason for studying the
periodic stacking of 2D Penrose lattices is that it would allow us to study the crossover from
the KT to the normal second-order transition as the number of layers is increased beyond
one. Although the KT transition is deemed to be unique to two dimensions, the details of
the change in the nature of this transition as the dimensionality is increased beyond one
have not been studied. We are currently engaged in this study, and hope to be able to report
on it in the near future. Since this study is currently incomplete we prefer to refrain from
making any comments on the above crossover phenomenon in the present paper.

The remainder of this paper is divided into sections as follows. In section 2 of this
paper we discuss our model and some details of the MC calculation. In sections 3 and 4
we present the results for the 2D and the 3D systems, respectively. In section 5, we present
our comments and conclusions.

2. The model and the simulation

We consider each verteéxof a finite lattice to be occupied by a classiéa¥-spin S; of unit
magnitude, at an angi® with respect to a fixed reference line. We also suppose that two
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spin vectors with orientatiors ando; situated at lattice siteisand j interact via a nearest-
neighbour coupling parametgr. The Hamiltonian for this system (the nearest-neighbour
ferromagneticX Y-model) is thus given by

H=-J) 8;-8=-J) cosb; —6)) @)
[ij] [ij]
where the summation is restricted to nearest-neighbour pgifrs To study the statistical
mechanics of this model we have used MC simulations based mainly on the Metropolis
algorithm [19], but occasionally the cluster spin algorithm of Wolff [20], and Ferrenberg
and Swendsen [21] was also used.

b) 7 ¢) <>- =210

6= 2n/5

Figure 1. (a) A section of a Penrose lattice, composed of two basic unit cells: (b) the fat
rhombus and (c) the thin rhombus.

In figure 1(a) we show a section of a 2D Penrose lattice [6], composed of two basic
unit cells, the ‘fat’ and ‘thin’ rhombuses shown in figures 1(b) and 1(c). The coordination
number for a lattice point in the Penrose lattice varies between 3 and 7, but has an average
value of 4 as in a square lattice. The ring structure is also similar to that of a square
lattice, i.e. only even-order rings appear. The self-similarity, or equivalently the inflation—
deflation property, of the Penrose lattice is governed by an irrational number, the Golden
Mean (r = (1+ +/5)/2), which also dictates its decagonal (pentagonal) bond-orientational
order. In our finite-cluster MC simulations, we have used periodic boundary conditions in
order to reduce surface effects. Rational approximants of the 2D Penrose lattice, which
can be repeated periodically, can be obtained from a sequence of rational (Fibonacci)
approximations to the Golden Mean. We follow a systematic way of generating these
periodic or rational approximants of the Penrose lattice, as given byobaand Billard
[22]. For the rest of this paper, we will refer to these approximants as periodic Penrose
lattices (PPL).

During the simulation the 2D and 3D systems were heated and cooled in a quasistatic
fashion, with quantities calculated only after equilibration had been achieved at each
temperature. This was determined by monitoring the internal energy and specific heat
every 10 to 100 steps per particle (spp). Typically, equilibration required 2000—8000 spp.
Averages were then calculated owrblocks, with a standard deviation (divided k7 — 1
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as opposed ta/M) used to determine the error. A grand average was then performed over
the cooling and heating data.

Table 1. The number of sites and linear dimensions of the 2D PPLs used in the simulation.
N Ly Ly

644 2480 21.09
1686 40.12 34.13
4414 64.92 55.23

11556 105.05 89.36

0.080

0.070 r

0.060

<(9n—00)2>

0.050 -

0.040 ol : : :
5.0 6.0 7.0 8.0 9.0 10.0

Figure 2. The ASD versus IV at T = 0.1J in 2D Penrose lattices. The straight line is a
least-squares fit of the data.

3. 2D systems

For the 2D systems, we have examined the mean square angular displa¢@thelimear
susceptibility x, specific heatC and helicity modulusy. Simulations were carried out

on PPLs with 246, 644, 1686, 4414 and 11556 sites. In table 1, we present the linear
dimensions of thesev-site clusters in the conventional and y-directions, L, and L,
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respectively. Starting from a completely ordered stdte= 0), the systems were heated up
to a temperature of = 2.0/ and then cooled back down.

All previous work done on periodic lattices (square, triangular and honeycomb) [7—
10] points to a KT transition ([12, 13]; see also [23]). Although the square-lattice results
give varying values for the critical temperatu¢&. = 0.89—Q95J) and the temperature
corresponding to the specific heat pgdl = 1.05-107J), there is no controversy about
the nature of the transition. In the following subsections, we present and analyse results for
the Penrose lattice, with a view to establishing similarity and distinction with respect to the
periodic lattices.

3.1. Angular square displacement

The mean square angular displacement (henceforth referred to simply as the angular square
displacement (ASD)) is a quantity which can indicate the existence or lack of long-range
order. In 2D, one expects no long-range order and a logarithmic divergence of the ASD with
the system lengtt.. However, since the linear dimensidnof a system is related to the
number of sitesV asN ~ L2 in 2D, the divergence of the ASD with respectiAbshould

also be logarithmic. In figure 2 we show the results for the ASD as a functionof [Fhese
results were obtained by averaging over five blocks, each containing 14 000 spp. Although
our values of(7.094 0.07) x 102 for the slope and1.04+ 0.05) x 102 for the intercept

are different to what is found for the square lattiee £ 7.86 x 1073, b = 5.52 x 107%)

[7], this is to be expected, since these quantities are lattice dependent. The perfectly linear
dependence of the ASD on M in figure 2 confirms the divergence of this quantity in the
thermodynamic limit and indicates a lack of conventional ordering within our systems, thus
ruling out any possibility of a second-order transition associated with the (dis)appearance
of a spontaneous magnetization.

3.2. Specific heat

The results for the specific heét, calculated from the fluctuations in the energyof the
system:
(U?) —(U)*

€= NkpT? @
are shown in figure 3 for various system sizas, The saturation of the peak height with
respect to system size and the smooth continuous variatiéhvath respect to temperature
point to the absence of either a first- or a second-order transition. This behaviour, however,
is consistent with a KT transition, for whic@ has an essential singularity at the critical
temperaturel,.. The specific heat in a KT transition remains smooth through the essential
singularity at7, and attains its maximum value at a temperature at which the correlation
length is finite. For all system sizes larger than this correlation length, the specific heat
remains unchanged. The general shape and features of the specific heat versus temperature
curves shown in figure 3 agree well with those obtained for the square lattice [7, 8]. The
only difference is the temperatu corresponding to the maximum @. For our systems,
we find 7, = 1.10J, whereasl, = (1.05-107)J for the square lattice.

In using equation (2) to calculaté, one encounters a convergence problem in the peak
region of (1.0-1.15). Although we have been able to significantly improve these results
by using five blocks of 200000 spp within this region (and five blocks of 40 000-60 000
outside), our results are not accurate enough to allow us to comment definitively on the
presence or absence of a cusplin As discussed by Van Himbergen and Chakravarty [8],
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Figure 3. The specific heat (per particle), obtained via equation (2) for 2D periodic Penrose
lattices (PPLs). The lines merely serve as guides for the eye.NTke246 system is clearly
below the saturation limit.

the presence of a cusp @ would imply an additional transition above the KT transition.
These authors find that for the square lattice, the width of the specific heat peak narrows
somewhat as the system size is increased. However, the largest lattice size considered by
them is 1600. In our simulation, the narrowing rate seems to slow down for higher system
size, e.g. betweetV = 4414 andN = 11556. Thus, the development of a cusp in the
specific heat in the thermodynamic limit seems unlikely. We have repeated the specific heat
calculation using the numerical derivative (of the energy) method. No feature other than a
peak is revealed in the temperature variation of the specific heat.

3.3. Susceptibility

The linear susceptibility per spin is usually determined via the fluctuations in magnetization:

2y 2
X = (m >kBT<m> )

where m represents the magnetization per spin. Accurate determination of the thermal
average of the magnetizatiofm), in a numerical simulation has some inherent difficulties,
as discussed extensively by Binder and Heermann [25]. However, for th& 2inodel

(m) can be shown analytically [26, 27] to be zero in the thermodynamic limit. This lack
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of conventional ordering in our system is supported by our analysis of the ASD. Thus, to
prevent any spurious value ¢f:) from affecting our results fo, we have proceeded in
the same fashion as Tobochnik and Chester [7] andmsets 0 in equation (3).

Table 2. Comparison of results for the susceptibiljtyof the 2D systems obtained via Metropolis

and cluster algorithms. Only the cooling results are shown. Metropolis results represent averages
over five blocks of 200000 spp, whereas the cluster results were obtained by averaging over
five blocks of 50 spp.

Susceptibility

Temperature

J/kp Metropolis ~ Cluster
1.08 892+ 101 931+ 2
1.10 568+ 59 540+ 2
1.11 422+ 42 418+ 2
1.13 264+ 27 256+ 1
1.15 176+ 5 171+1
1.16 146+ 4 141+1

We find that with the Metropolis algorithm, it is difficult to obtain converged values of
x hearT,.. We estimate that convergence within acceptable error bars under the Metropolis
scheme would require extremely long runs on the SGI machines currently available to us.
However, this convergence problem is eliminated by using the cluster algorithm of Wolff
[20], and Ferrenberg and Swendsen [21]. As indicated in table 2, the cluster algorithm yields
error bars fory of <0.5%. This is significantly better than thel0% error bars obtained via
the Metropolis algorithm. It appears that convergence in magnetization fluctuations is harder
(more time consuming) to achieve via the Metropolis scheme for this particular 2D model.
No such convergence problem was encountered for calculating the specific heat, where
the two algorithms yielded similar results with similar error bars and within comparable
cpu times. We refrain from making detailed comments about the relative advantages and
disadvantages of the two algorithms, since our study is quite limited in this regard.

In figure 4, we present values gf, obtained using the cluster algorithm. These results
are for theN = 11556 system, and were calculated by averaging over five blocks of 50 spp.

For a KT transition, the susceptibility is expected to obey the following relation [13]:

~ expbt™") T>T,
X = (4)

00 T <T,

wherer = T/T, — 1. In figure 4, we present the results fprfor our largest system size

N = 11556. The solid line is an exponential fit of the data points via equation (4), using

the critical exponent$ = 1.5 andv = 0.5, given by Kosterlitz [13]. Our estimate df.

is 1.027 and the closest temperature to this that we are able to fit to our data to is 1.10,

i.e. we are able to fit the data around temperatures that are only 7% away from the critical

temperature. The KT form (equation (4)) holds for our data in the range 7-25% dpove
For values ofl' < 1.08J we begin to see finite-size effects in the valuegadbtained

from the simulation. The increase jn becomes weaker than that given by the KT (exp-

onential) form, approaching axi-dependent finite value &t = 0, while in an infinite lattice

it is supposed to stay infinite belof.. Equations involving finite-size scaling [28] involve

only a logarithmic dependence on the system lengthAs a result, one must examine

very large systems, involving sufficiently different length scales. Such a scaling analysis,
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Figure 4. The susceptibility for the largest-siz&/ (= 11556) 2D PPL used in this work. A
fit using x ~ exp(bt~"), b = 1.5 andv = 0.5 over the temperature rande = (1.10-130)J
yields 7, = (1.027+ 0.002)J.

and therefore an independent derivation of the constamtsd v, lies beyond our present
computing resources.

3.4. Helicity modulus

An important quantity in the study of the KT transition is the helicity modulus as discussed
by Fisher, Barber and Jasnow [29]. It is a measure of the response of the system to an
externally applied twist across its boundaries and plays a role similar to the shear or rigidity
modulus in a solution~ gel or liquid — solid transition. If we consider a two-dimensional
system (of lengthL, and widthZ,) and apply periodic boundary conditions along, say, the
y-axis, the helicity modulusy, can be determined from the difference between the free
energies corresponding to anti-periodic and periodic boundaries alongdhis [29, 8]:
72 L

Fa_FP:7L_jy' (5)
Below T, the system will have some resistance to the twist; abifvi will not. As the
system is heated from an ordered statewill slowly decrease and will drop to zero at
T=T.,.
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In their study of granular superconductors, Shih, Ebner and Stroud [30] present a method
of determiningy. Instead of imposing a twisted boundary condition, they add a term to the
Hamiltonian (via the introduction of a vector potential), which is equivalent to applying a
twist. The second derivative of the free energy with respect to this term yields the helicity
modulus:

2
y=N1 Jxl.zj (cogH; — kBT <|:Z Jxij sin(d; — Oj):| >
)

(ij (ij)

2
_T <Z J.Xij Sin(f),- — 91)> (6)
(ij)

where N is the number of lattice sites angd;, = x; — x;. Teitel and Jayaprakash, in their
study of the frustratec Y-model [9], give an alternative expression for

2
1
y=—5 - kBTN <{Z sin(o; — ej)xi]} > (7)

While there is some difference between these two equations, we have found that they yield
similar results. For our simulations, we have used equation (7) to detefmipgamarily
because it requires less CPU time.

In calculatingy, we have found that it is difficult to obtain converged values at high
temperatures. Whereas five blocks of 5000 spp were sufficient at low temperatures, for
T > 0.8 many more steps were needed. In some cases, five blocks of over 150000 spp
were used (fotV = 4414 andT > 1.05J).

According to Nelson and Kosterlitz [31, 32], the superfluid-to-normal transition in
helium thin films can be interpreted as a KT transition, wittbeing proportional to the
superfluid densityp,. Nelson and Kosterlitz argue that there is a discontinuous drop of
magnitude 27 in y at T, corresponding to the discontinuous droppinat the transition.

Our simulation results show (figure 5) a drop jinat high temperature, which becomes
sharper with increasing system size. The dropyirfor our 11556-site lattice is the
sharpest drop obtained so far in any numerical simulation on 2D lattices. We have analysed
the size dependence of the slopejofversusT curves, but lack of numerical precision
prevents us from making a definite conclusion [33] regarding the nature (discontinuous
versus continuous) and the magnitude (whether discontinuous or not) of the drop. On the
basis of the location of the drop, we estimate a valu&.ah the range 1.0-05J. This is

in good agreement with the result = 1.027J obtained via the susceptibility fit.

Our results exhibit a lowF behaviour consistent with that obtained by Teitel and
Jayaprakash for the square lattice [9] (namely>~ J — kgT /4). The results for periodic
lattices illustrate that a§ — 0,y — —-( ); where(u) is the average energy per particle
[9, 10]. Thus, in our casey should approach unity. However, as figure 5 illustrates,
approaches a value which is less than unity. This discrepancy can be explained by examining
equation (7). We have found directly from our simulation thatTas> 0, the ensemble
average in the second term on the right-hand side of equation (7) varies linearly with both
N andT. Hence, at low temperatures, equation (7) can be rewritten as

= Ly- L pkyTN 8)
V=W T kTN
or, more appropriately,
1
y=—=(u)— J?A ©)

2
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Figure 5. The helicity modulus for 2D PPLs. The lines presented serve as guides for the eye.

where the value of the constant is lattice dependent. For regular periodic lattices the
constantA — 0 asT — 0, but for the quasiperiodic lattices studied by us it seems to
maintain a finite value. We have performed simulations of the helicity modulus on square
lattices. These simulations show clearly that> 1 asT — 0, indicating thatA — 0 as

T — 0 for a square lattice.

Following Van Himbergen and Chakravarty [8] we have looked at the derivaiydgi
whereg is the inverse temperature. This quantity can be related to the differEpeel/,,,
between the energies of the system under anti-periodic and periodic boundary conditions
(see equation (2.5) of reference [8]). The latter, and correspondingldd diverges at
the KT transition temperature in the thermodynamic limit. For a finite lattiée— U,
has a peak at around the transition temperature and the height of the peak increases with
the system size. Our simulation of this quantity for the system size 1686 shows a peak
at 105J. This value is slightly higher than the estimate Tof from the susceptibility fit,
but consistent with thd,.-range given by the helicity modulus itself. If there is a slight
downward shift in the peak location with increasing system size, as observed for the square
lattice [8], the asymptotic value df. would be more in line with the valug. = 1.027/,
obtained from the fit to the susceptibility. Since the numerical problems associated with
computing this quantity increase significantly with the system size, lattices of larger size
were not considered.
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Table 3. The number of sites and linear dimensions of the 3D systems used in the simulation.

N Ly L, L,

42 3.62 3.08 3.0
752 9.47 8.06 8.0
3198 15.33 13.04 13.0
13524 2480 21.10 21.0
57324 40.12 34.13 34.0

4. 3D systems

To create 3D systems, we have stacked 2D PPLs periodically alongatkis (ensuring that
each plane is identical). Since the PPLs are rectangular, we cannot create completely cubic
boundaries. However, we have kept the overall length of the systems igrdhrection
similar to that in they-direction in an effort to give them a nearly cubic shape. We have
kept the interplanar nn spacing equal to the intraplane nn distance (unity). Although spins
are still confined to they-plane, spins in plang; are now allowed to interact with those
in planesr; 11 andw;_; (with J = 1 for both interplanar and intraplanar interactions). In
table 3, we present the dimensions of the systems which were used for these simulations.
Periodic boundary conditions were utilized for all of the directionsy andz. Starting
from a high-temperatur€l’ = 3.0J) random configuration, the systems were cooled in a
guasistatic manner to a temperatureTot= 1.0J. They were then reheated, back to the
high-temperature limit, in the same fashion. Using the Metropolis algorithm [19], five blocks
of 15000 spp were sufficient for calculating the averages above and below the transition,
whereas in thd.-region, five blocks of 25000 spp were used.

Table 4. Critical exponents for the 3IXY-model, as given in reference [17], and as obtained
in this work for a periodic stacking of 2D Penrose lattices.

Quantity Exponent  Value from Betts (reference [17])  Value obtained in this work
Specific heat « 0 0.03+0.03
Magnetization g 1/3 030+ 0.01
Susceptibility y 4/3 1314+ 0.02

Previous Monte Carlo studies using cubic systems [14-16] all confirm a second-order
phase transition occurring &. = 2.20J. Furthermore, the critical exponents that they
obtain are also in good agreement with those obtained from other methods [17]. These
exponents (as given by Betts [17]) are summarized in table 4. We have examined the
spontaneous magnetization susceptibilityy and specific heaf'. Our results and analysis
are presented in the following subsections.

4.1. Magnetization

The spins in a finite system have a tendency to undergo global rotation, thus spuriously
lowering the value of the magnetization. As discussed by Binder and Heermann [25],
in such situations one must calculatie:|) as opposed tdm). We have followed this
prescription for estimating the magnetization. While we have actually calcujpted we

shall henceforth refer to this quantity simply as
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Figure 6. Magnetization in the 3D periodic stacking of 2D PPLs. Note the attenuation of the
tail region with increasing system size.

As figure 6 illustrates, the behaviour af for our system is, indeed, consistent with a
second-order phase transition. At low temperatifes- 1.0J), we see the onset of strong
ferromagnetic ordering, witlm tending to unity atT = 0. Upon heating the system, the
magnetization decreases and approaches zero in the high-temperature region. Our results
show the typical temperature variation of the order parameter in a second-order phase
transition, as obtained in various previous numerical studies (such as those for the 2D and
3D Ising models [25, 34]). For smaller systems the order parameter goes to zero with an
extended tail. The tail region steadily diminishes with the increasing system size. For our
largest size N = 57 324, the tail region or the finite-size effect seems to be remarkably
small.

We have performed the cumulant analysis, given by Binder [25, 35, 36], to accurately
determine the value of, for our system. We computed the fourth-order cumuléipt
given by

(m4>L
Uu,=1 e (10)
At T = T., U, reaches a fixed value for all. By determiningU; for various lattice
sizes and calculating the ratig, /U;., one is able to determin&, from a plot of the
different U, /U, curves. This analysis is presented in figure 7. The various curves
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Figure 7. The determination of’; for the 3D systems using cumulant ratios. Ttig/ U, for
various systems all indicatg. = (2.292+ 0.003)J).

intersect atl/; /U, = 1 and the temperature at which this occurs is the critical temperature:
T.=2.292].

With this value ofT,, it is possible to perform a finite-size scaling analysisnofin an
effort to determine its critical exponept The appropriate scaling relation is [25, 34]

m= NP f[(T - T)NY?] (11)

where f is the finite-size scaling function, is the critical exponent describing the power-
law decay of the correlation length and we have estimated the linear dimehipnv'/3.
Because of the finite-size effects and the periodic boundary conditions, reliable values of the
correlation length are difficult to obtain. The problem is even greater close to the transition,
making it almost impossible to determinefrom a direct computation of the correlation
length. Instead of computing the correlation length, we have studied the scaling plots of
the cumulantd/; as functions of T — T,) LY, with T, = 2.292J, given by the crossing

of the cumulants. Depending on whether we chofise L,, L, or N¥3 as L and the
number of temperature values closeTiothat we include in the plot, we obtain values of

v ranging between .6 and 07. The accepted value of for the 3D XY-model, obtained

from the studies on cubic lattices, ig2[17], within the range of values that we obtain
from the above scaling plots. We thus assume 2/3 and use this value aof to obtain

the magnetization exponefit With x = (T — T.)NY®" andy = mN#/3" we obtain a plot

of y versusx. When this is done with the correct choicegf7, and 8, the values ofn
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Figure 8. Finite-size scaling analysis of. Usingv = 2/3 and7, = 2.292/, the data can
be collapsed onto a single curve with= 0.3. The inset illustrates the increasefnwith the
system size nedr,.

for the various system sizes should all collapse onto a single curve. For our systems we
find that the best fit occurs fg# = 0.3 (with v = 2/3 and7, = 2.292). This value of8 is
slightly lower than the value /B given in table 4. However, we note a clear trend in the
Inm versus Ifl— T /T,) plot for our systems (in the inset of figure 8). This graph indicates
that the slope of the lines (and th@d} increases with the system size as one approathes

(the —3 to —4 region). Therefore, for larger lattices we should be able to obtain valyés of
slightly higher than (8, which we hope will saturate to the valug3lin the infinite-lattice

limit.

4.2. Susceptibility

Our results fory are also consistent with a second-order phase transition (figure 9). They
show no saturation with the system size, pointing to a divergence in the thermodynamic
limit. For finite-size systemsy satisfies the scaling relation

x =N"®g[(T — T)NY*] (12)

where y is the susceptibility exponent anglis the scaling function. We have analysed
this relationship for botl¥ > T, andT < T,.. For reference purposes, we dengtas the
exponent which describes the behaviour whes T, andy’ that for7T < T..
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Figure 9. The susceptibility in the 3D systems, showing a lack of saturation and a divergence
with increasing system size, consistent with a second-order transition.

The result of this analysis (for both cases) is given in figure 10.7Fer T,, we obtain
the best fit whery = 1.30. ForT < T., we find that this occurs whep' = 1.33. Although
one should obtainy = y’, the difference is not unusual, when compared with previous
studies ofx. These studies find values for ranging from 4/3 [17] to 1.30 [24]. The
results obtained via the MC studies on cubic lattices all fall within this range. Thus, even
though our values fop andy’ are not equal, they are in good agreement with previous
work on cubic lattices.

4.3. Specific heat

Our results for the specific heat, are displayed in figure 11. There is no saturation with
respect to the system size. The divergence in specific heat becomes apparent for our largest
size, N = 13524. One can conduct a finite-size scaling analysis in an effort to determine
the specific heat exponesmt However, there are severe numerical problems associated with
determininge, due to its extremely small value. The divergence in the specific he&t at

is almost logarithmic, withe being close to zero. The value quoted in the review article by
Betts [17] is exactly zero, while Yeomans [24], in her textbook on phase transitions, quotes

a value of 0.01. Estimates affrom high-temperature series expansion, experimental work

on “He near the superfluid transition and field-theoretical methods have been discussed
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Figure 10. Finite-size scaling analysis of the susceptibility. Using- 2/3 andT, = 2.292/,
one obtains: (@Y > 7., y =1.30; (b)T < T, y' = 1.33.

by Brass and Mitrovd [37]. All of these estimates border around zero. Note that the
Rushbrooke’s hyperscaling relation [38],+ 28 + y = 2, indicates a value o = 0.1,
if we usey = 1.30 andg = 0.3 for our system. This is an upper limit, since our results
also permit usingy = 1.33 andg = 0.33, which would yielde = 0.01 in agreement with
reference [24]. Josephson’s hyperscaling relatiah,= 2 — «, should yielda = 0 for
d = 3, if we assume = 2/3. Our finite-size scaling results indicate a value close to 0.3.
This, we think, is due to the fact that small errors in the simulated values of the specific
heat close td. can give rise to large changes in the exponent, when the exponent is close
to zero.

Through a plot of InC versus Il — T/ T,), we have been able to establish a somewhat
meaningful value ofy’ for our N = 13524 system. As figure 12 indicates, n&arwhere
the relationc ~ |¢|~* is supposed to hold, the slope of the data (and tHuss quite small.
In fact, this yields a value af’ ~ 0.03, which is considerably better than the value obtained
from the finite-size scaling analysis. We have been unable to deteomfoethe T > T,
case using this method. Our (inadequate) system size seems to have a stronger influence on
the data in this region, making it less reliable than the datd'fer T, by a similar amount.

4.4. Summary of 3D results

In table 4 we provide our most reliable estimates, along with the error bars, of the specific
heat, magnetization and the susceptibility exponents, and compare them with the accepted
values for the 3-DXY-model in the literature [17]. As discussed in the previous subsections,
our estimates of the specific heat, and the susceptibility exponents have small differences
in their values above and below the transition. The error bars in table 4 are obtained from
the fitting of the simulated quantities to the power-law form near the transition.
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Figure 11. Like x, C has a divergence consistent with a second-order transition.

5. Comments and conclusion

Through our analysis of the specific heat, susceptibility and helicity modulus, we have
conclusively shown that th&(Y-model on a 2D Penrose lattice exhibits a Kosterlitz—
Thouless transition. Our numerical simulation points to a KT transition occurring in the
temperature rangg. = (1.0-105)J, while the specific heat peak is & = 1.10J. These
values are slightly higher than the valugs= (0.89-095)J and 7, = (1.05-107)J for

the square lattice [7-10]. However, the overall behaviour of the susceptibility, specific
heat and helicity modulus in our simulation is remarkably similar to that reported for the
latter. Furthermore, our data are consistent with the critical expoients.5 andv = 0.5,
reported in the original Kosterlitz—Thouless work [12, 13].

For a 3D stacking of the 2D Penrose lattices we find that the system undergoes a
classical second-order transition, with magnetization as the order parameter. This behaviour
is supported by our analysis of the magnetization, susceptibility and specific heat. Like the
2D results, the critical temperature 8f = (2.292+ 0.003)J for our system is slightly
higher than that found for cubic systems. The higher valueg. dor both our 2D and 3D
systems (compared with those for the square and the cubic lattices, respectively) are most
probably due to the variation in coordination number from site to site. Although the average
coordination number for the 2D Penrose lattice is the same as for the square lattice, the
actual coordination number varies between 3 and 7. The critical exparesatd.03+0.03,
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Figure 12. A plot of InC versus Il — 7/T,). One can determine the value @f from the
slope of the data ned.. In this casep’ = 0.03.

B =0.30+0.01 andy = 1.31+ 0.02 are in good agreement with accepted values for the
3D XY-model, indicating that the periodic and the quasiperiodic lattices belong to the same

universality class for this model.
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